

CIRCULAR FWN: N

Name \qquad
Review of the unit circle and preparation for the activity ahead:

We will create a grid system of lines using all our angles. Follow along as I do this.

You should have 7 horizontal and 7 vertical lines.
At the end of each line we will write the degree of that line. The degrees should rotate around to 360°.

There should be 49 intersection points.
2) Explain in your own words why each point on the unit circle has the coordinates $(\cos \theta, \sin \theta)$ where θ is the degree of the angle. (Hint: draw a right triangle having the hypotenuse be the radius of one.)
3) Think about what happens as we start a second or third rotation around the unit circle. What would $390^{\circ}=$? or $450^{\circ}=$? Why?
4) Taking the grid lines we created above lets draw all the points $(x, y) \Rightarrow(\cos \theta, \sin \theta)$. For our work today we will only use values of θ that are multiples of 30 .
5) The following pages have many grids like the one we created. We will explore what happens as we change up what is happening to our x - $\operatorname{coordinate~}(\cos \theta)$ and what happens to our y coordinate $(\sin \theta)$. Remember as we go that to place points we go to the vertical line for x and the horizontal line for y. $\operatorname{Graph}(2,5)$

Two together: These are the graphs that should be graphed. Have each person in your group do a different graph.

$(\cos \theta, \sin \theta+30)$	$(\cos \theta, \sin \theta-30)$	$(\cos \theta, \sin 2 \theta)$	$(\cos \theta, \sin 2 \theta+90)$
$(\cos \theta, \sin \theta+60)$	$(\cos \theta, \sin \theta-60)$	$(\cos \theta, \sin 2 \theta+30)$	Continue adding 30°
$(\cos \theta, \sin \theta+90)$	$(\cos \theta, \sin \theta-90)$	$(\cos \theta, \sin 2 \theta+60)$	Try $(\cos 3 \theta, \sin 2 \theta)$

Teachers Notes:

These are called Lissajour Curves (LEE-suh-zhoo). Which are a parametric plot of the harmonic system. These curves have application to any repetitive, back and forth movement through an equilibrium such as sound and light waves, or electrons in a wire with alternating current. The electrical power used in TV's, radar, and microwaves are all examples. The motion of a pendulum is an example and the tuning of a motor would use these waves or curves. For example, "engineers can use the principles of Lissajour to precisely tune and set up the phase relation between a known reverence signal and a signal to be tested."

If a pendulum is made of a string connected at two points and then another string tied to that one, this will form these shapes. As one string gets longer verses the other the shapes change.
https://www.youtube.com/watch?v=uPbzhxYTioM
Above is the youtube resource that will show this and also shows how to make a pendulum for your classroom.
Here are the equations for Lissajour curves: $x(t)=A \sin (a t+\theta)$ and $y=B \sin (b t)$
These are very similar to what we graphed, especially as we remember that
$y=\sin (x)=\cos (x-\pi / 2)$. In our graphs we let $A=B=1$ and did our adding to the y-coordinate instead of the $x-$ coordinate. The behavior gets more interesting when $a \& b$ are not both equal to one. If $a / b=1$ we have a line, circle, or an ellipse. The ratio a / b tells us that there are a vertical lobes and b horizontal lobes.

Talking with students about what happened as we changes our x and y-coordinates in relation to the equations given above we could talk about the amplitude, change in period of a sine and cosine function, and phase shift of the sine and cosine functions.

The following chart, on the left, gives the type of result that is formed when $\mathrm{a} / \mathrm{b}=1$ and there is a phase shift. This chart if for the above equations and not for our $(\cos x, \sin x)$. The chart on the right shows how the ratio gives the different number of lobes.

First two resources are interactive:
https://academo.org/demos/lissajous-curves/

http://datagenetics.com/blog/april22015/index.html
https://en.wikipedia.org/wiki/Lissajous curve
http://www.rfcafe.com/references/popular-electronics/lissajous-had-a-figure-for-it-mar-1957-popularelectronics.htm

